Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 448: 139157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569411

RESUMO

About half of the world's population is infected with the bacterium Helicobacter pylori. For colonization, the bacterium neutralizes the low gastric pH and recruits immune cells to the stomach. The immune cells secrete cytokines, i.e., the pro-inflammatory IL-17A, which directly or indirectly damage surface epithelial cells. Since (I) dietary proteins are known to be digested into bitter tasting peptides in the gastric lumen, and (II) bitter tasting compounds have been demonstrated to reduce the release of pro-inflammatory cytokines through functional involvement of bitter taste receptors (TAS2Rs), we hypothesized that the sweet-tasting plant protein thaumatin would be cleaved into anti-inflammatory bitter peptides during gastric digestion. Using immortalized human parietal cells (HGT-1 cells), we demonstrated a bitter taste receptor TAS2R16-dependent reduction of a H. pylori-evoked IL-17A release by up to 89.7 ± 21.9% (p ≤ 0.01). Functional involvement of TAS2R16 was demonstrated by the study of specific antagonists and siRNA knock-down experiments.


Assuntos
Helicobacter pylori , Interleucina-17 , Proteínas de Plantas , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Paladar , Digestão , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/imunologia , Linhagem Celular
2.
J Agric Food Chem ; 70(21): 6503-6518, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593506

RESUMO

Soy sauce, one of the most common Asian fermented foods, exhibits a distinctive savory taste profile. In the present study, targeted quantitation of literature-known taste compounds, calculation of dose-over-threshold factors, and taste re-engineering experiments enabled the identification of 34 key tastants. Following the sensoproteomics approach, 14 umami-, kokumi-, and salt-enhancing peptides were identified for the first time, with intrinsic taste threshold concentrations in the range of 166-939 µmol/L and taste-modulating threshold concentrations ranging from 42 to 420 µmol/L. The lowest taste-modulating threshold concentrations were found for the leucyl peptide LDYY with an umami- and salt-enhancing threshold of 42 µmol/L. Addition of the 14 newly identified peptides to the taste recombinate (aRecDipeptides) increased the overall taste intensity and mouthfulness of the recombinate, and comparison with the authentic soy sauce confirmed the identification of all key tastants. Finally, these data as well as the quantitative profiling of several (non)-fermented foods highlight the importance of fermentation with respect to taste formation. On the basis of this knowledge, microorganisms with specific digestion patterns may be used to tailor the taste profile and especially the salt taste sensation of soy sauces.


Assuntos
Alimentos Fermentados , Alimentos de Soja , Fermentação , Peptídeos/química , Cloreto de Sódio na Dieta , Paladar
3.
J Agric Food Chem ; 69(44): 13173-13189, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723522

RESUMO

Application of a sensitive UHPLC-MS/MSMRM method enabled the simultaneous quantitation of 23 sweet-, licorice-, and bitter-tasting saponins in Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch., different licorice plants and root compartments, processed licorice, as well as different Glycyrrhiza spp. The combination of quantitative data with sweet, licorice, and bitter taste thresholds led to the determination of dose-over-threshold factors to elucidate the sweet, licorice, and bitter impact of the individual saponins with and without mycorrhiza symbiosis to evaluate the licorice root quality. Aside from glycyrrhizin (1), which is the predominant sweet- and licorice-tasting saponin in all licorice samples, 20 out of 22 quantitated saponins contributed to the taste profile of licorice roots. Next to sweet-/licorice-tasting glycyrrhizin (1), 24-hydroxy-glycyrrhizin (9), 30-hydroxy-glycyrrhizin (11), and 11-deoxo-24-hydroxy-glycyrrhizin (14) as well as licorice tasting saponins 20α-galacturonic acid glycyrrhizin (17), 24-hydroxy-20α-glycyrrhizin (21), and 11-deoxo-glycyrrhizin (12) were determined as key contributors to licorice root's unique taste profile. A quantitative comparison of 23 saponins as well as 28 polyphenols between licorice roots inoculated with arbuscular mycorrhiza fungi and controls showed that important taste-mediating saponins were increased in mycorrhizal roots, and these alterations depended on the growth substrate and the level of phosphate fertilization.


Assuntos
Glycyrrhiza , Micorrizas , Saponinas , Raízes de Plantas , Simbiose , Espectrometria de Massas em Tandem , Paladar
4.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681798

RESUMO

Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2'-O-acetylsalicortin (1), 3'-O-acetylsalicortin (2), 2'-O-acetylsalicin (3), 2',6'-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.


Assuntos
Inflamação/tratamento farmacológico , Salicilatos/isolamento & purificação , Salix/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Células Cultivadas , Cromatografia Líquida , Dinoprostona/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Dor/tratamento farmacológico , Fitoterapia/métodos , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Salicilatos/análise , Salicilatos/farmacologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA